Relations and Functions - Test Papers

 CBSE Test Paper 01

CH-02 Relations and Functions


  1. Two finite sets have m and n elements. The number o elements in the power set of the first is 48 more than the total number of elements in the power set of the second. Then the values of m and n are
    1. 6, 4
    2. 6, 3
    3. 3, 7
    4. 7, 6
  2. Let f(x+1x)=x2+1x2,x0, then f(x) =
    1. x22
    2. x21
    3. x2
    4. x2+1
  3. The function f (x) = log (x+x2+1) is
    1. a periodic function
    2. neither an even nor an odd function
    3. an odd function
    4. an even function
  4. If A is the set of even natural numbers less than 8 and B is the set of prime numbers less than 7, then the number of relations from A to B is
    1. 32
    2. 92
    3. 291
    4. 29
  5. The relation R = {1, 1), (2, 2), (3, 3)} on the set {1, 2, 3) is
    1. an equivalence relation
    2. reflexive only
    3. symmetric only
    4. transitive only
  6. If f(1 + x) = x2 + 1, then f(2 - h) is ________.
  7. Fill in the blanks: Let A and B be any two non-empty finite sets containing m and n elements respectively, then, the total number of subsets of (A × B) is ________.
  8. If A × B = {(a, 1),(a, 5),(a, 2),(b, 2),(b, 5),(b, 1)}, then find A, B and B × A.
  9. Find the domain of the function f(x)=x2+3x+5x2+x6.
  10. Let f, g: RR be defined, respectively by f(x) = x + 1, g(x) = 2x – 3. Find f + g, f – g and fg.
  11. If A = (1, 2, 3), B = {4}, C = {5}, then verify that A×(BC)=(A×B)(A×C).
  12. Let f: R  R and g: C  C be two functions defined as f(x) = x2 and g(x) = 2x. Are they equal functions?
  13. If A = {2, 3}, B = {4, 5}, C = {5, 6}, find A×(BC),A×(BC),(A×B)(A×C)
  14. If (x3+1,y23)=(53,13)find the values of x and y.
  15. If A = {a,d}, B = {b, c, e} and C = {b, c, f}, then verify that
    1. A×(B  C) = (A×B)  (A×C)
    2. A×(B  C) = (A×B)  (A×C)

CBSE Test Paper 01
CH-02 Relations and Functions


Solution

  1. (a) 6, 4
    Explanation:

    Let A has m elements and B gas n elements. Then, no. of elements in

    P(A) = 2m and no. of elements in P(B) = 2n.]

    By the question,

    2m = 2n + 48

     2m - 2n = 48

    This is possible, if 2m = 64, 2n = 16. (As 64 - 16 = 48)

    2m=642m=26

    m=6.

    Also, 24=1624=24

    n=4

  2. (a) x22

    Explanation:

    f(x+1x)=x2+1x2=(x+1x)22

    f(x)=x22

  3. (c) an odd function
    Explanation:

    f(x)=log(x+(x)2+1)=log(x+x2+1

    =log(x2+1x)=log((x2+1x)(x2+1+x)(x2+1+x))

    =log(1(x2+1+x))=log(1)log(x+x2+1)

    =0log(x+x2+1)

    f(x)=f(x)

     f is an odd fucntion

  4. (d) 29

    Explanation:

    Here, A = {2,3,4}; B={2,3,5}

    n(A) = 3, n)B) = 3

    no. of relations from A to B =2n(A)×n(B)=23×3=29

  5. (a) an equivalence relation
  6. h2 - 2h + 2

  7. 2mn

  8. × B = {(a,1),(a,5),(a,2),(b,2),(b,5),(b,1)}. Clearly,
    A is the set of first elements of all ordered pairs in A × B and B is set of second elements of all ordered pairs in A × B.
     A= {a, b}, B = {1,5,2}
    and B × A = { 1,5,2}×{ a , b }
    = {(1,a),(1,b),(5,a),(5,b),(2,a),(2,b)}

  9. Here f(x)=x2+3x+5x2+x6=x2+3x+5(x+3)(x2)
    The function f(x) is defined for all values of x except
    x + 3 = 0, x  - 2 = 0 i.e. x = -3 and x = 2
    Thus domain of f(x) = R - {-3, 2}

  10. Here f (x) = x + 1 and g (x) = 2x – 3
    Now (f + g) (x) =f (x) + g(x) = x + 1 + 2x - 3 = 3x - 2
    (f - g) (x) = f(x) - g(x) = x + 1- (2x - 3) = x + 1 - 2x + 3 = -x + 4
    (f)(g)(x)=f(x)g(x)=x+12x3,x32

  11. As given in the question,

    A = {1, 2, 3}, B = {4} and C = {5}

    BC={4}{5} = {4, 5}

    A×(BC)= {1, 2, 3} × {4, 5}
    A×(BC)= {(1, 4), (1, 5), (2, 4) , (2, 5), (3, 4), (3, 5)}.......(a)

    Now,

    (A×B) = {1, 2, 3} × {4} = {(1, 4), (2, 4), (3, 4)}

    and, (A×C) = {1, 2, 3}×  {5} = {(1, 5), (2, 5), (3, 5)}

    (A×B)(A×C)= {(1, 4), (2, 4), (3, 4)}  {(1, 5), (2, 5), (3, 5)}
    (A×B)(A×C)= {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}......(b)

    From equations (a) and (b), we get
    A×(BC)=(A×B)(A×C)

    Hence verified.

  12. We have,
    f : R  R and g : C  C

    where R is set of Real numbers and C is set of Complex numbers.

    From definitions as given,

    Domain of f = R and

    Domain of g = C

    Now, Two functions are said to be equal when domain and co-domain of both the functions are equal.

    As, Domain of f ≠ Domain of g,
     f(x) and g(x) are not equal functions.

  13. We have,
    A = {2, 3}, B = {4, 5}, C = {5, 6}
    BC={4,5}{5,6}
    = {4, 5, 6}
    A×(BC)={2,3}×{4,5,6}
    = {(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}
    Now,
    BC={4,5}{5,6}={5}
    A×(BC)={2,3}×{5}
    ={(2, 5), (3, 5)}
    Now,
    A×B={2,3}×{4,5}
    ={(2, 4), (2, 5), (3, 4),(3, 5)}
    and, A×C={2,3}×{5,6}
    = {(2, 5), (2, 6), (3, 5), (3, 6)}
    (A×B)(A×C)= {(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}

  14. Here (x3+1,y23)=(53,13)
    x3+1=53and y23=13

    x3=531 and y=13+23
    x3=23 and y=33
     x = 2 and y = 1

    1. To determine A × (B  C)
       C = {b, c, e}  {b, c, f} = {b, c, e, f}
       A×(B  C) = {a, d} × {b, c, e, f}
      = {(a, b), (a, c), (a, e), (a, f), (d, b), (d, c), (d, e), (d, f)} ...(i)
      To determine (A × B)  (A × C)
      × B = {a, d} × {b, c, e}
      = {(a, b), (a, c), (a, e), (d, b), (d, c), (d, e)}
      A ​​​​​​× C = {a, d} × {b, c, f}
      = {(a, b), (a, c), (a, f), (d, b), (d, c), (d, f)}
       (A×B)  (A×C)
      = {(a, b), (a, c), (a, e), (a, f), (d, b), (d,c), (d,e),(d,f)} ...(ii)
      From Eqs. (i) and (ii), we get
      A×(BC) = (A×B)(A×C)
      Hence verified.
    2. To determine A × (B  C)
      (B  C) = {b, c, e}  {b, c, f} = {b, c}
       A × (B  C) = {a, d} × {b, c}
      = {(a, b), (a, c), (d, b), (d, c)} ...(iii)
      To determine (A×B)(A×C)
      × B = {(a, b), (a, c), (a, e), (d, b), (d, c), (d, e)}
      × C = {(a, b), (a, c), (a, f), (d, b), (d, c), (d, f)}
       (A×B)(A×C) = {(a, b), (a, c), (d, b), (d, c)} ...(iv)
      From Eqs. (iii) and (iv), we get
      A×(BC) = (A×B)(A×C)
      Hence verified.