CBSE Class 11 Mathematics
Revision Notes
Chapter - 3
TRIGONOMETRIC FUNCTIONS
- Angles
- Trigonometric Functions
- Sum and Difference of Two Angles
- Trigonometric Equations
- Measurement of an angle: The measure of an angle is the amount of rotation from the initial side to the terminal side.
- Right angle: If the rotating ray starting from its initial position to final position, describes one quarter of a circle, then we say that the measure of the angle formed is a right angle.
- If in a circle of radius r, an arc of length l subtends an angle of θ radians, then l = rθ
- Radian measure = π180× Degree measure
- Degree measure = 180π× Radian measure
Trigonometric Functions
t−ratios I II III IV
sinθ=y + + - -
cosθ=x + - - +
tanθ=yx + - + -
- cosecθ=1sinθ, secθ=1cosθ, cotθ=1tanθ
- Trigonometric values of some angles:
| 0o | 30o | 45o | 60o | 90o | 180o |
sinθ | 0 | 12 | 12√ | 3√2 | 1 | 0 |
cosθ | 1 | 3√2 | 12√ | 12 | 0 | −1 |
tanθ | 0 | 13√ | 1 | 3–√ | ∞ | 0 |
Trigonometric Identities:
- cos2 x + sin2x = 1
- 1 + tan2x = sec2x
- 1 + cot2x = cosec2x
Trigonometric ratio of (90∘+x) in terms of x:
- cos(π2+x)= -sin x
- sin(π2+x)= cos x
- tan(π2+x)=−cotx
Trigonometric ratio of (90∘−x) in terms of x:
- cos(π2−(x)= sin x
- sin(π2−x)= cos x
- tan(π2−x)=cotx
Trigonometric ratio of (180∘−x) in terms of x:
- cos(π−x)= -cos x
- sin(π−x)= sin x
- tan(π−x)=−tanx
Trigonometric ratio of (270∘−x) in terms of x:
- sin(3π2−x)=−cosx
- cos(3π2−x)=−sinx
- tan(3π2−x)=cotx
Trigonometric ratio of (270∘+x) in terms of x:
- sin(3π2+x)=−cosx
- cos(3π2+x)=sinx
- tan(3π2+x)=−cotx
Trigonometric ratio of (360∘−x) in terms of x:
- cos(2π−x)=cosx
- sin(2π−x)=−sinx
- tan(2π−x)=−tanx
Trigonometric ratio of (360∘+x) in terms of x:
- cos(2π+x)=cosx
- sin(2π+x)=sinx
- tan(2π+x)=tanx
- cos (2nπ + x) = cos x
- sin (2nπ + x) = sin x
Trigonometric Ratios of Compound Angles:
Sum Formulae:
- sin (x + y) = sin x cos y + cos x sin y
- cos (x + y) = cos x cos y - sin x sin y
- tan(x+y)=tanx+tany1−tanxtany
- cot(x+y)=cotxcoty−1coty+cotx
Difference Formulae:
- sin (x - y) = sin x cos y - cos x sin y
- cos (x - y) = cos x cos y + sin x sin y
- tan(x−y)=tanx−tany1+tanxtany
- cot(x−y)=cotxcoty+1coty−cotx
Some Useful Results:
- sin(x+y)sin(x−y)=sin2x−sin2y=cos2y−cos2x
- cos(x+y)cos(x−y)=cos2x−sin2y=cos2y−sin2x
- tan(x+y+z)=tanx+tany+tanz−tanxtanytanz1−tanxtany−tanytanz−tanztanx
Transformation Formulae:
Product Formulae (on the basis of L.H.S.) or A-B formulae:
- 2sinxcosy=sin(x+y)+sin(x−y)
- 2cosxsiny=sin(x+y)−sin(x−y)
- 2cosxcosy=cos(x+y)+cos(x−y)
- 2sinxsiny=cos(x−y)−cos(x+y)
Sum and Difference Formulae (on the basis of L.H.S.) or C-D formulae:
- sinC+sinD=2sinC+D2cosC−D2
- sinC−sinD=2cosC+D2sinC−D2
- cosC+cosD=2cosC+D2cosC−D2
- cosC−cosD=2sinC+D2sinD−C2
Trigonometric Functions of Multiple and Sub-multiples of Angles:
- sin2x=2sinxcosx=2tanx1+tan2x
- cos2x=cos2x−sin2x=2cos2x−1= 1−2sin2x=1+tan2x1+tan2x
- tan2x=2tanx1−tan2x
- sin 3x = 3sin x - 4sin3x
- cos 3x = 4cos3x - 3cos x
- tan3x=3tanx−tan3x1−3tan2x
- sinx2=±1−cosx2−−−−−√
- cosx2=±1+cosx2−−−−−√
- tanx2=1−cosx1+cosx−−−−−√
- sin18∘=cos72∘=5√−14
- cos18∘=sin72∘=1410+25–√−−−−−−−−√
- cos36∘=5√+14
- sin36∘=1410−25–√−−−−−−−−√
Trigonometric Equations:
- Principle Solutions: The solutions of a trigonometric equation, for which 0≤x<2π are called the principle solutions.
- General Solutions: The solution, consisting of all possible solutions of a trigonometric equation is called its general solutions>
- Some General Solutions:
- sin x = 0 gives x = nπ, where n∈Z.
- cos x = 0 gives x = (2n + 1) π2, where n∈Z.
- tanx=0 gives x=nπ
- cotx=0 gives x=(2n+1)π2
- secx=0 gives no solution
- cosecx= 0 gives no solution
- sinx=sinygives x=nπ+(−1)ny
- cos x = cos y, implies x = 2nπ ± y, where n∈Z.
- tan x = tan y implies x = nπ + y, where n∈Z.
- sin2x=sin2y gives x=nπ±y
- cos2x=cos2y gives x=nπ±y
- tan2x=tan2y gives x=nπ±y