Trigonometric Functions - Revision Notes

 CBSE Class 11 Mathematics

Revision Notes
Chapter - 3
TRIGONOMETRIC FUNCTIONS


  1.   Angles
  2.   Trigonometric Functions
  3.   Sum and Difference of Two Angles
  4.   Trigonometric Equations
  • Measurement of an angle: The measure of an angle is the amount of rotation from the initial side to the terminal side.
  • Right angle: If the rotating ray starting from its initial position to final position, describes one quarter of a circle, then we say that the measure of the angle formed is a right angle.
  • If in a circle of radius r, an arc of length l subtends an angle of  θ radians, then l = rθ
  • Radian measure = π180× Degree measure
  • Degree measure = 180π× Radian measure

Trigonometric Functions

  • Quadrant:

          tratios                    I          II          III         IV

          sinθ=y                   +         +          -           -

          cosθ=x                  +         -           -           +

          tanθ=yx                 +         -           +          -

  • cosecθ=1sinθsecθ=1cosθcotθ=1tanθ
  • Trigonometric values of some angles:
 0o30o45o60o90o180o
sinθ012123210
cosθ132121201
tanθ013130

Trigonometric Identities:

  • cos2 + sin2= 1
  • + tan2= sec2x
  • + cot2= cosec2x

Trigonometric ratio of (90+x) in terms of x:

  • cos(π2+x)= -sin x
  • sin(π2+x)= cos x
  • tan(π2+x)=cotx

Trigonometric ratio of (90x) in terms of x:

  • cos(π2(x)= sin x
  • sin(π2x)= cos x
  • tan(π2x)=cotx

Trigonometric ratio of (180x) in terms of x:

  • cos(πx)= -cos x
  • sin(πx)= sin x
  • tan(πx)=tanx

Trigonometric ratio of (270x) in terms of x:

  • sin(3π2x)=cosx
  • cos(3π2x)=sinx
  • tan(3π2x)=cotx

Trigonometric ratio of (270+x) in terms of x:

  • sin(3π2+x)=cosx
  • cos(3π2+x)=sinx
  • tan(3π2+x)=cotx

Trigonometric ratio of (360x) in terms of x:

  • cos(2πx)=cosx
  • sin(2πx)=sinx
  • tan(2πx)=tanx

Trigonometric ratio of (360+x) in terms of x:

  • cos(2π+x)=cosx
  • sin(2π+x)=sinx
  • tan(2π+x)=tanx
  • cos (2nπ + x) = cos x
  •  sin (2nπ + x) = sin x

Trigonometric Ratios of Compound Angles:

Sum Formulae:

  • sin (x + y) = sin x cos y + cos x sin y
  • cos (x + y) = cos x cos y - sin x sin y
  • tan(x+y)=tanx+tany1tanxtany
  • cot(x+y)=cotxcoty1coty+cotx

Difference Formulae:

  • sin (x - y) = sin x cos y - cos x sin y
  • cos (x - y) = cos x cos y + sin x sin y
  • tan(xy)=tanxtany1+tanxtany
  • cot(xy)=cotxcoty+1cotycotx

Some Useful Results:

  • sin(x+y)sin(xy)=sin2xsin2y=cos2ycos2x
  • cos(x+y)cos(xy)=cos2xsin2y=cos2ysin2x
  • tan(x+y+z)=tanx+tany+tanztanxtanytanz1tanxtanytanytanztanztanx

Transformation Formulae:

Product Formulae (on the basis of L.H.S.) or A-B formulae:

  • 2sinxcosy=sin(x+y)+sin(xy)
  • 2cosxsiny=sin(x+y)sin(xy)
  • 2cosxcosy=cos(x+y)+cos(xy)
  • 2sinxsiny=cos(xy)cos(x+y)

Sum and Difference Formulae (on the basis of L.H.S.) or C-D formulae:

  • sinC+sinD=2sinC+D2cosCD2
  • sinCsinD=2cosC+D2sinCD2
  • cosC+cosD=2cosC+D2cosCD2
  • cosCcosD=2sinC+D2sinDC2

Trigonometric Functions of Multiple and Sub-multiples of Angles:

  • sin2x=2sinxcosx=2tanx1+tan2x
  • cos2x=cos2xsin2x=2cos2x1= 12sin2x=1+tan2x1+tan2x
  • tan2x=2tanx1tan2x
  • sin 3x = 3sin x  - 4sin3x
  • cos 3x = 4cos3x - 3cos x
  • tan3x=3tanxtan3x13tan2x
  • sinx2=±1cosx2
  • cosx2=±1+cosx2
  • tanx2=1cosx1+cosx
  • sin18=cos72=514
  • cos18=sin72=1410+25
  • cos36=5+14
  • sin36=141025

Trigonometric Equations:

  • Principle Solutions: The solutions of a trigonometric equation, for which 0x<2π are called the principle solutions.
  • General Solutions: The solution, consisting of all possible solutions of a trigonometric equation is called its general solutions>
  • Some General Solutions:
  • sin x = 0 gives x = nπ, where nZ.
  • cos x = 0 gives x = (2n + 1) π2, where nZ.
  • tanx=0 gives x=nπ
  • cotx=0 gives x=(2n+1)π2
  • secx=0 gives no solution
  • cosecx= 0 gives no solution
  • sinx=sinygives x=nπ+(1)ny
  • cos x = cos y, implies x = 2nπ ± y, where nZ.
  • tan x = tan y implies x = nπ + y, where nZ.
  • sin2x=sin2y gives x=nπ±y
  • cos2x=cos2y gives x=nπ±y
  • tan2x=tan2y gives