Relations and Functions - Solutions

 CBSE Class–11 Mathematics

NCERT Solutions
Chapter - 2 Relations and Functions
Exercise 2.1


1. If  find the values of  and 

Ans. Here 

 and 

 and 

 and 

  and 


2. If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A  B).

Ans. Number of elements in set A = 3 and Number of elements in set B = 3

Number of elements in A  B = 3  3 = 9


3. If G = {7, 8} and H = {5, 4, 2}, find G  H and H  G.

Ans. Given: G = {7, 8} and H = {5, 4, 2}

GH = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)}

And H  G = {(5, 7), (4, 7), (2, 7), (5, 8), (4, 8), (2, 8)}


4. State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly:

(i) If P =  and Q =  then P  Q = 

(ii) If A and B are non-empty sets, then A  B is a non-empty set of ordered pairs  such that  A and  B.

(iii) If A = {1, 2}, B = {3, 4}, then 

Ans. (i) Here P =  and Q = 

Number of elements in set P = 2 and Number of elements in set Q = 2

Number of elements in P  Q = 2  2 = 4

But PQ =  and here number of elements in P  Q = 2

Therefore, statement is false.

Correct statment is P×Q={(m,m),(n,n),(n,m),(m,n)}

(ii) True

(iii) True


5. If A =  find A  A  A.

Ans. Here A = 

A = 

 A  A = 


6. If A  B =  find A and B.

Ans. Given: A  B = 

A = set of first elements =  and B = set of second elements = 


7. Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:

(i) 

(ii) A  C is a subset of B  D.

Ans. Given: A = {1, 2}, B = {1, 2, 3, 4},

C = {5, 6} and D = {5, 6, 7, 8}

(i)  = {1, 2, 3, 4}  {5, 6} = 

 ……….(i)

 B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}

 C = {(1, 5), (1, 6), (2, 5), (2, 6)

(AB)  (A  C) =  ……….(ii)

Therefore, from eq. (i) and (ii), 

= (A  B)  (A  C)

(ii) A  C = {(1, 5), (1, 6), (2, 5), (2, 6)

 D = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8),

(4, 5), (4, 6), (4, 7), (4, 8),

Therefore, it is clear that each element of A  C is present in B  D.

 C  B  D


8. Let A = {1, 2} and B = {3, 4}, write A  B. How many subsets will A  B have? List them.

Ans. Given: A = {1, 2} and B = {3, 4}

 B = {(1, 3), (1, 4), (2, 3), (2, 4)}

Number of elements in A  B = 4

Therefore, Number of subsets of AB=2=16

ϕ ,{(2,3)},{(1,4)},{(2,3)},{(2,4)},{(1, 3), (1, 4)} ,{(1, 3),(2, 3)} ,{(1, 3),(2, 4)},{(1, 4), (2, 3)} ,{(1, 4),(2, 4)},{(2, 3), (2, 4)},{(1, 3), (1, 4), (2, 3)} ,{(1, 3), (1, 4), (2, 4)} ,{(1, 3), (2, 3), (2, 4)} ,{(1, 4), (2, 3), (2, 4)},{(1, 3), (1, 4), (2, 3), (2, 4)}

9. Let A and B be two sets such that  and  If  are in A  B.

Ans. Here 

  A and  B

  A and  B

  A and  B

But it is given that  and 

 A =  and B = {1, 2}


10. The Cartesian Product A  A has 9 elements among which are found  and (0, 1). Find the set A and the remaining elements of A  A.

Ans. Here 

  A and  A

  A and  A

  A

But it is given that n(A×A)=9 which implies that 

 A = 

And A  A = 

Therefore, the remaining elements of A  A are

(-1,-1), (-1,1), (0,-1), (0,0), (1,-1), (1,0), (1,1)