CBSE Class–11 Mathematics
NCERT Solutions
Chapter - 13 Limits and Derivative
Exercise 13.1
Evaluate the following limits in Exercises 1 to 22.
1.
Ans. 3 + 3 = 6
2. limx→π(x−227)
Ans. limx→π(x−227)=(π−227)
3.
Ans.
4.
Ans.
5.
Ans.
6.
Ans. is of the form 00
Put now as
limx→0((x+1)5−1x)= limy→1(y5−1y−1)=limy→1(y5−15y−1)
=5⋅15−1=5⋅1=5 since limx→a(xn−anx−a)=nan−1
=5
7.
Ans.
=
=
8.
Ans. is of the form 00
=
=
=
9.
Ans.
10.
Ans. is of the form 00
=
=
=
= = 1 + 1 = 2
11.
Ans.
=
= = 1
12.
Ans. =
=
= =
13.
Ans.
=
=
= ablimax→0(sinaxax) [x→0⇒ax→0] and [limθ→0sinθθ=1]
=
14.
Ans.
=limx→0(sinaxax)ax(sinbxbx)bx=ablimx→0(sinaxax)(sinbxbx)
=ab⋅limax→0(sinaxax)limbx→0(sinbxbx) since [x→0⇒ax→0x→0⇒bx→0]
= ab⋅11=ab [limθ→0sinθθ=1]
15.
Ans.
Put now as
=
= = [sin(−θ)=−sinθ]
= [limθ→0sinθθ=1]
=
16.
Ans. =
17.
Ans. is of the form 00
limx→0(cos2x−1cosx−1)=limx→0(2cos2x−1)−1cosx−1 [cos2θ=2cos2θ−1]
= limx→02(cos2x−1)cosx−1
= 2limx→0(cosx−1)(cosx+1)(cosx−1)
= 2limx→0(cosx+1)=2(1+1)=2×2=4
18.
Ans.
= 1blimx→0x(a+cosx)sinx
= 1blimx→0xsinx⋅limx→0(a+cosx)
= 1b⋅limx→0(a+cosx)limx→0(sinxx) [limθ→0sinθθ=1]
= 1b×a+11=a+1b
19.
Ans. =
= = = 0
20.
Ans.
Dividing numerator and denominator by
=
= limx→0(sinaxax)+bxax1+(sinbxbx)bxax
= limax→0(sinaxax)+balim1ax→01+limbx→0(sinbxbx)⋅balimbx→01 [x→0⇒ax→0x→0⇒bx→0]
= 1+ba1+ba=1 [limθ→0sinθθ=1]
21.
Ans. Given:
= =
= =
= = 0