Limits and Derivatives - Test Papers

 CBSE Test Paper 01

CH-13 Limits and Derivatives


  1. If G (x) = 25x2 then Ltx1G(x)G(1)x1 has the value
    1. 124
    2. 24
    3. 124
    4. 15
  2. Ltxπ3secx2xπ3 is equal to
    1. 2
    2.  2+3
    3. 3
    4. 23
  3. The function, f(x)=(xa)2cos1xaforxa and f (a) = 0, is
    1. continuous but not derivable at x = 0
    2. derivable at x = a
    3. not continuous at x = a
    4. neither continuous nor derivable at x=a 
  4. Ltx435+x15x=
    1. does not exist
    2. 0
    3. 13
    4. 13
  5. Ltx0sinxn(sinx)m,n>m>0, is equal to
    1. mn
    2. 0
    3. 1
    4. nm
  6. Fill in the blanks:

    The value of given limit limx0cosxπx is ________.

  7. Fill in the blanks:

    The value of limit limr1πr2is ________.

  8. font-family: Verdana font-size: 8px Evaluate limx2x36x2+11x6x26x+8

  9. Find the derivative of x at x = 1

  10. Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ax4bx2+cosx

  11. Find the value of limx0e3x1x.

  12. Find the derivative of 2x34

  13. Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ax+bpx2+qx+r

  14. Suppose f(x)={a+bx,x<14,x=1bax,x>1 and if limx1 f(x) = f(1), then what are the possible values of a and b?

  15. The differentiation of sec x with respect to x is sec x tan x.

CBSE Test Paper 01
CH-13 Limits and Derivatives


Solution

  1. (c) 124

    Explanation: The equation is in the form of 0/0

    Using L'Hospital rule we have 1225x2(2x)1
    substituting x = 1 we get 124
  2. (d) 23

    Explanation: Using L'Hospital;

    Ltxπ3secxtanx1
    23
  3. (b) derivable at x = a
    Explanation: situation x - a = t; then the function will become
    Ltt0t2cos1t
     0. Finite number = 0
    f(a) = 0
  4. (c) 13

    Explanation: Equation is in the form of 0/0

    Using L'Hospital rule we get 125+x125x
    Substituting x = 4 we get 13
  5. (b) 0
    Explanation: litx0sinxn(sinx)mxm+nxm+n

    Ltx0sinxnxnxm(sinx)mxnxm
    1.1m.xnm
     1.0 = 0

  6. 1π

  7. π

  8. When x = 2, the expression x36x2+11x6x26x+8assume the form 00. Therefore, (x-2) is factor common to numerator and denominator. Factorising the numerator and denominator, we have
    font - family : Verdana font - size : 8px limx2x36x2+11x6x26x+8

    =limx2(x1)(x2)(x3)(x2)(x4)

    =limx2(x1)(x3)(x4)=(21)(23)(24)=12

  9. Here ddx(x) = 1
     Derivative of x at x = 1

  10. Here f(x)=ax4bx2+cosx=ax4bx2+cosx
    f'(x)=ddx[ax4bx2+cosx]=addx(x4)bddx(x2)+ddx(cosx)
    ax5+2bx3sinx=4ax5+2bx3sinx
    4ax5+2bx3sinx=4ax5+2bx3sinx

  11. We have, limx0e3x1x=limx0e3x1x×33 [multiplying numerator and denominator by 3]
    =3limx0e3x13x..... (i)
    Let h = 3x, as x  0, then h  0
    Then, from Eq. (i), we get
    limx0e3x1x=3limh0eh1h=3(1)[limx0ex1x=1]
    = 3

  12. Here f(x)=2x34
    f'(x)=ddx(2x34)
    =2ddx(x)ddx(34)
    = 2 × 1 - 0 = 2

  13. f(x)=ax+bpx2+qx+r
    f'(x)=ddx[ax+bpx2+qx+r]
    =(px2+qx+r)ddx(ax+b)(ax+b)ddx(px2+qx+r)(px2+qx+r)2
    =(px2+qx+r)(a)(ax+b)(2px+q)(px2+qx+r)2
    =apx2+aqx+ar2apx2aqx2bpxbq(px2+qx+r)2
    =apx22bpx+arbq(px2+qx+r)2

  14. We  have,
    f(x)={a+bx,x<14,x=1bax,x>1
    Now, LHL =limx1f(x)
    =limx1(a+bx)=limh0[a+b(1h)][putting x = 1 - h as x  1, then h  0]
    = a + b
    RHL =limx1+f(x)
    =limx1+(bax)=limh0[ba(1+h)][putting x = 1 + h as x  1, then h  0]
    = b - a
    Since, limx1 f(x) = f(1)
     LHL = RHL = f(1)
     a + b = b - a = 4 [ f(1) = 4, given]
     a + b = 4 ..(i) and b - a = 4 ..(ii)
    On solving (i) and (ii), we get
    a = 0, b = 4

  15. Let f(x) = sec x. Then, f(x + h) = sec (x + h)
     ddx (f (x)) = limh0f(x+h)f(x)h
     ddx (f (x)) = limh0sec(x+h)secxh
     ddx (f (x)) = limh01cos(x+h)1cosxh
     ddx (f (x)) = limh0cosxcos(x+h)hcosxcos(x+h)
     ddx (f (x)) = limh02sin(x+x+h2)sin(x+hx2)hcosxcos(x+h) [cosCcosD=2sin(C+D2)sin(DC2)] 
     ddx (f (x)) = limh02sin(2x+h2)sin(h2)hcosxcos(x+h)
     ddx (f (x)) = limh0sin(2x+h2)cosxcos(x+h)×limh0sin(h/2)(h/2)
     ddx (f (x)) = sinxcosxcosx× 1 = tan x sec x. [limh0sin(h/2)(h/2)=1]
    Hence, ddx (sec x) = sec x tan x.