Limits and Derivatives - Revision Notes

 CBSE Class 11 Mathematics

Revision Notes
Chapter-13
LIMITS AND DERIVATIVES


  1. Limits
  2. Derivatives
  3. Miscellaneous Questions

Meaning of xa or "x tends to a" or "x approaches a", x is a variable. The expected value of the function as dictated by the points to the left of a point defines the left hand limit of the function at that point. Similarly the righthand limit. It can be changed so that its value comes nearer and nearer to a.  0<|xa|<δ

(i) xa,      (ii) |xa| becomes smaller and smaller as we please.

Neighbourhood: The set of all real numbers lying between aδ and a+δ is called the neighbourhood of a. Neighbourhood of a = (aδ,a+δ),     x(aδ,a+δ)

  • Limit of a function at a point is the common value of the left and right hand limits, if they coincide

Left hand limit of f at x=a. When x approches a from left hand side of a, the function f(x) tends to l "a definite number". This definite number l is said to be the left hand limit of f at x=a.

Right hand limit of f at x=a. When x approches a from right hand side of a, the function f(x) tends to l "a definite number". This definite number l is said to be the right hand limit of f at x=a.

Therefore, if Left hand limit of f at x=a = Right hand limit of f at x=a, then the limit of f(x) at x=a exists.

  • For function f and a real number a, limxf(x) and f (a) may not be same (Infact, one may be defined and not the other one).
  • For functions f and g the following holds:.

limxa[f(x)±g(x)]=limxaf(x)±limxag(x)

limxa[f(x).g(x)]=limxaf(x).limxag(x)

limxa[f(x)g(x)]=limxaf(x)limxg(x)

Following are some of the standard limits

limxaxnanxa=nan1

limx0sinxx=1limxasin(xa)xa=1

limx01cosxx=0

limx0tanxx=1,limxatan(xa)xa=1

limx0sin1xx=1,limx0tan1xx=1

limx0ax1x=logea,a>0,a1

Derivatives

The derivative of a function f at a is defined by

f(a)=limh0f(a+h)f(a)h

Derivative of a function f at any point x is defined by

f(x)=df(x)dx=limh0f(x+h)f(x)h

For functions u and v the following holds:

(u±v)=u±v          

(uv)=uv+uv                      ddx(uv)=u.dvdx+v.dudx

(uv)=uvuvv2                           ddx(uv)=v.dudxu.dvdxv2

provided all are defind.

Following are some of the standard derivatives

ddx(xn)=nxn1

ddx(sinx)=cosx

ddx(cosx)=sinx

ddx(tanx)=sec2x

ddx(cotx)=cosec2x

ddx(secx)=secx.tanx