Binomial Theorem - Solutions

 CBSE Class–11 Mathematics

NCERT Solutions
Chapter - 8 Binomial Theorem
Exercise 8.1


Expand each of the expression in Exercises 1 to 5.

1. 

Ans. Using Binomial Theorem,

=1+5(2x)+10(4x2)+10(8x3)+5(16x4)+(32x5)

 Ans. 


2. 

Ans. Using Binomial Theorem,

(2xx2)5=5C0(2x)5+5C1(2x)4(x2)1+5C2(2x)3(x2)2+5C3(2x)2(x2)3+5C4(2x)1(x2)4+5C5(x2)5

=32x5+5(16x4)(x2)+10(8x3)(x42)+10(4x2)(x38)+5(2x)(x164)+(x532)


3. 

Ans. Using Binomial Theorem,

64x6+6(32x5)(3)+15(16x4)(9)+20(8x3)(27)+15(4x2)(81)+6(2x)(243)+729


4. 

Ans. Using Binomial Theorem,


5. 

Ans. Using Binomial Theorem,

x6+6x51x+15x41x2+20x31x3+15x21x4+6x1x5+1x6


Using binomial theorem evaluate each of the following:

6. 

Ans.    First we have to express 96 as the sum or difference of two numbers whose powers are easier to calculate and then use Binomial Theorem

We can write 96=1004

   Therefore 

Using Binomial Theorem,

= 1000000 – 120000 + 4800 – 64

= 1004800 – 120064 = 884736


7. 

Ans. First we have to express 102 as the sum or difference of two numbers whose powers are easier to calculate and then use Binomial Theorem

We can write 102=100+2

Therefore 

Using Binomial Theorem,

= 10000000000 + 1000000000 + 40000000 + 800000 + 8000 + 32

= 11040808032


8. 

Ans. First we have to express 101 as the sum or difference of two numbers whose powers are easier to calculate and then use Binomial Theorem

We can write 101=100+1

Therefore  

Using Binomial Theorem,

(100+1)4=4C0(100)4+4C1(100)3(1)+4C2(100)2(1)2+4C3(100)1(1)3+4C4(1)4

= 100000000 + 4000000 + 60000 + 400 + 1

= 104060401


9. 

Ans. First we have to express 99 as the sum or difference of two numbers whose powers are easier to calculate and then use Binomial Theorem

We can write 99=1001

Therefore 

Using Binomial Theorem,

1005+5(100)4(1)+10(100)3(1)+10(100)2(1)+5(100)(1)+(1)

= 10000000000 – 500000000 + 10000000 – 100000 + 500 – 1

= 9509900499


10. Using binomial theorem, indicate which number is larger  or 1000.

Ans. We have 1.1=1+0.1

Using Binomial Theorem,

= 1 + 10000 (0.1) + other positive numbers

= 1 + 1000 + other positive numbers

which is greater than 1000


11. Find  Hence evaluate: 

Ans. Given: 

Using Binomial Theorem,

Putting  and 

86[3+2]=406 Ans.


12. Find  Hence or otherwise evaluate 

Ans. Given: 

Using Binomial Theorem,

 = 

Putting 

= 2 [ 8 + 60 + 30 + 1] = = 198


13. Show that  is divisible by 64 whenever  is a positive integer.

Ans. We know that b is divisible by a( or a divides b) b=ak, k is an integer 

Here we have to show that 64 divides 

9n+18n9=64k,k is an integer

 We have 

Using Binomial Theorem,we  have

(1+x)n=nC0+nC1x+nC2x2+nC3x3+.........................+nCnxn

9n+1=

9n+18n9=64[n+1C2+n+1C3(8)+.........................+n+1Cn+1(8)n1]

9n+18n9=64k,where k=n+1C2+n+1C3(8)+..........+n+1Cn+1(8)n1 is an integer

which shows that  is divisible by 64.


14. Prove that 

Ans. L.H.S. = 
But we have  (1+x)n=nC0+nC1x+nC2x2+nC3x3+.........................+nCnxn

r=0n3rnCr= 
Hence proved