Binomial Theorem - Test Papers

 CBSE Test Paper 01

CH-08 Binomial Theorem


  1. Find the coefficient of  x6y3 in the expansion of (x+2y)9

    1. 1008

    2. 336

    3. 84

    4. 672

  2. The coefficients of xp and xq ( p, q are + ve integers) in the binomial expansion of (1+x)p+q are

    1. reciprocal to each other

    2. unequal 

    3. additive inverse of each other

    4. equal

  3. (5+1)2n+1(51)2n+1is

    1. 0

    2. an even positive integer

    3. an odd positive integer

    4. not an integer

  4. The term independent of x in the expansion of (x3x2)18 is

    1. 36

    2. 18C636

    3. 18C6

    4. 18C12

  5. The 1st three terms in the expansion of (2+x3)4 are

    1. 16+32x3+24x29

    2. 16+34x3+24x29

    3. 16+12x+316x2

    4. 16+3x316x2

  6. Fill in the blanks:

    The value of 8C5 is ________.

  7. Fill in the blanks:

    In the binomial expansion of (a + b)9, the middle terms is ________ term.

  8. Find the value of 8C5.

  9. Find the number of terms in expansions of (2x - 3y)9.

  10. Using binomial theorem, write down the expansion: (2x + 3y)5.

  11. Prove that r=0n3rnCr=4n

  12. Find the coefficient of x in the expansion of (1 - 3x + 7x2) (1 - x)16.

  13. Expand the given expression (2xx2)5

  14. If the third term in the expansion of (1x+xlog10x)5 is 1000, then find x.

  15. Find the coefficient of x7 in (ax2+1bx)11 and x-7 in (ax1bx2)11 and find the relation between a and b so that these coefficients are equal.

CBSE Test Paper 01
CH-08 Binomial Theorem


Solution

  1. (d) 672
    Explanation:
    We have the general term of (x+a)n is Tr+1=nCr(x)nrar
    Now consider (x+2y)9
    Here Tr+1=9Cr(x)9r(2y)r=9Cr(2)r(x)9r(y)r
    Comparing the indices of x as well as y in x6y3 and in Tr+1 , we get 
    (x)9r(y)r2=x6y3
    r=3
    T4=T3+1=9C3(x)93(2y)3
    Hence coefficient of x6y3=8.9C3=672
  2. (d) equal
    Explanation:
    We have the general term of (x+a)n is Tr+1=nCr(x)nrar
    Now consider (1+x)p+q
    Here Tr+1=p+qCr(1)(p+q)r(x)r
    Comparing the indices of x in xp and in Tr+1,we get p=r
    Therefore the coefficient of xis Tp+1=p+qCp
    Now again comparing the indices of x in xq and in Tr+1 ,we get q=r
    Therefore the coefficient of xq is Tp+1=p+qCp
    But we have  p+qCp=p+qCq [nCr=nCnr]
  3. (b) an even positive integer
    Explanation:
    We have (a+b)n(ab)n
    =[nC0an+nC1an1b+nC2an2b2+nC3an3b3++nCnbn]
    [nC0annC1an1b+nC2an2b2nC3an3b3+....................+(1)n.nCnbn]
    =2[nC1an1b+nC3an3b3+..............]
    Leta=5andb=1andn=2n+1
    Now we get (5+1)2n+1(51)2n+1
    =2[2n+1C1(3)2n+2n+1C3(3)2n213+2n+1C5(3)2n415+]
    =2[2n+1C1(3)n+2n+1C3(3)n1+2n+1C5(3)n2+..............]
    =2(a positive integer)
    Hence we have (5+1)2n(51)2n+1 is an even positive integer
  4. (b) 18C636

    Explanation:
    We have the general term of (x+a)n is Tr+1=nCr(x)nrar
    Now consider (x3x2)18
    Here Tr+1=18Cr(x)18r(3x2)r
    The term independent of x means index of  x is 0.
    Comparing the indices of x in x0 and in Tr+1 , we get 18r2r=0r=183=6
    Therefore the required term is T6+1=18C6
    (x)186(3x2)6=18C6.36

  5. (a) 16+32x3+24x29

    Explanation:
    We have (x+a)n=nC0xn+nC1xn1a+nC2xn2a2+nC3xn3a3+
    ........+Cnan
    Now consider (2+x3)4
    Here x=2,a=x3,n=4
    (2+x3)4=4C0(2)4+4C1(2)3(x3)+4C2(2)2(x3)2+4C3(2)1(x3)3+......
    =16+32x3+24x29+

  6. 56

  7. 5th and 6th

  8. 8C5 = 8!(85)!5! [ nCn!(nr)!r!]
    8!3!5!=8×7×6×5×4×3×2×13×2×1×5×4×3×2×1 = 56

  9. The expansion of (x + a)n has (n + 1) terms. So, the expansion of (2x - 3y)9 has (9 + 1) = 10 terms.

  10. Using formula, (a+b)n=k=0nnCk(ankbk)
    (2x + 3y)5 = 32 x5 + 240 x4y + 720 x3y2 + 1080 x2y3 + 810 xy4 + 243 y5

  11. r=0nCranrbr=(a+b)n.......(1)
    Now, r=0n3rnCr=r=0nnCr(1)nr.3r=(1+3)n=(1+3)n (by (1)
    =4

  12. We have, (1 - 3x + 7x2) (1 - x)16
    = (1 - 3x + 7x2) (16C0 - 16C1x + 16C2x2 + ...)
    =   (16C0 - 16C1x + 16C2x2 - ...) - 3x (16C0 - 16C1x + ...) + 7x2 (16C0 - 16C1x + ...)
    Here, the term containing x is -16C1x -3 16C0x = - 16x - 3x
     Coefficient of x = - 16 - 3 = - 19

  13. Using binomial theorem for the expansion of (2xx2)5 we have
    (2xx2)5=5C0(2x)5+5C1(2x)4(x2)+5C2(2x)3(x2)2+5C3(2x)2(x2)3
    +5C4(2x)(x2)4+5C5(x2)5
    =32x5+516x4x2+108x3x24+104x2x38+52xx416+x532
    =32x540x3+20x5x+58x3x532

  14. We have,
    T3 = 1000
     T2+1 = 1000
     5C2(1x)52(xlog10x)2 = 1000
     10(xlog10x)2×x3 = 1000
     x2log10x×x3 = 100
     x2log10x3 = 102
     2log10x3 = logx102 [taking logx both sides]
     2log10x3 = 2 logx10 
     2log10x3 = 2log10x [using logab = 1logba]
     2y3=2y, where y = log10x
     2y2 - 3y - 2 = 0
     (2y + 1) (y - 2) = 0
     y = 2 or y = 12
     log10x = 2 or log10x = 12  x = 102 = 100 or x = 1012

  15. Suppose x7 occurs in (r + l )th term of the expansion of (ax2+1bx)11
    Now, 
    Tr+1 = 11Cr (ax2)11-r (1bx)r = 11Ca11-r b-r x22-3r ...(i)
    This will contain x7, if
    22 - 3r = 7  3r = 15  r = 5.
    Putting r = 5 in (i), we obtain that
    Coefficient of x7 in the expansion of (ax2+1bx)11 is 11C5 a6 b-5
    Suppose x-7 occurs in (r + 1)th term of the expansion of (ax1bx2)11
    Now,
    Tr+1 = 11Cr (ax)11-r (1bx2)r = 11Cr a11-r (- 1)r b-r x11 - 3r ...(ii)
    This will contain x-7, if
    11 - 3r = - 7  3r = 18  r = 6
    Putting r = 6 in (ii), we obtain that
    Coefficient of x-7 in the expansion of (ax1bx2)11 is 11C6 a5 b-6 (-1)6
    If the coefficient of x7 in (ax2+1bx)11 is equal to the coefficient of x-7 in (ax1bx2)11, then
    11C5 a6 b-5 = 11C6 a5 b-6 (- 1)6  11Cab = 11C6  ab = 1 [ 11C11C6]