Binomial Theorem - Revision Notes

 CBSE Class 11 Mathematics

Revision Notes
Chapter-8
BINOMIAL THEOREM


   1.  Binomial Theorem for Positive Integral Indices

   2.  General and Middle Terms

  • Binomial Theorem: The expansion of a binomial for any positive integral n is given by Binomial Theorem, which is
    (a+b)n=nC0an+nC1an1b+nC2an2b2+....+nCn1abn1+nCnbn.
  • The coefficients of the expansions are arranged in an array. This array is called Pascal’s triangle.
  • The general term of an expansion   (+ b)n  is Tr+1  =nCranr.br
  • The general term of an expansion (ab)n=(1)r.nCr.anr.br
  • The general term of (1+x)n=nCr.xr
  • The general term of (1x)n=(1)r.nCr.xr
  • In the expansion (+ b)n, if n is even, then the middle term is the  (n2+1)thterm. If n is odd, then the middle terms are (n2+1)thand (n+12+1)th terms.
  • rth term from the end in (a+b)n=(n+2r)th term fromt he beginning.
  • Method to prove Binomial Theorem:

         (a) Principle of Mathematical Induction.

         (b) Combinatorial Method.

  • Factorial notation:
    (i) n!=1×2×3×4.......×n;     0!=1
    (ii) nCr=n!r!(nr)!
    (iii) nCr=nCnr
    (iv)