Principle of Mathematical Induction - NCERT Solutions

 CBSE Class–11 Mathematics

NCERT Solutions
Chapter - 4 Principle of Mathematical Induction

Exercise 4.1


Prove the following by using the principle of mathematical induction for all  N:

1. 

Ans. Let 

For 

 

1 = 1

 is true.

Now, let  be true for 

  ……….(i)

For 

  [Using eq. (i)]

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n)  is true for all  N.


2. 

Ans. Let 

For 

 

1 = 1

 is true.

Now, let  be true for 

……….(i)

For 

 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


3. 

Ans. Let 

For 

1 = 1

 is true.

Now, let  be true for 

 ……….(i)

For 

 [Using (i)]

 is true.

Therefore,  is true..

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


4. 

Ans. Let 

For 

6 = 6

 is true.

Now, let  be true for 

  ………(i)

For 

 [Using eq. (i)]

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


5. 

Ans. Let 

For 

3 = 3

 is true.

Now, let  be true for 

For 

 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


6.  

Ans. Let 

For 

2 = 2

 is true.

Now, let  be true for 

  ………(i)

For 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


7. 

Ans. Let 

For 

3 = 3

 is true.

Now, let  be true for 

For 

 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


8. 

Ans. Let 

For 

2 = 2

 is true.

Now, let  be true for 

For 

 = 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


9. 

Ans. Let 

For 

P(1) is true.

Now, let  P(n) be true for 

For 

 = 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


10. 

Ans. Let 

For 

 is true.

Now, let  be true for 

 

For 

 

 P(k+1)=k6k+4+1(3k+2)(3k+5)

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


11. 

Ans. Let 

For 

 is true.

Now, let  be true for 

……….(i)

For 

R.H.S. = 

And L.H.S. =  [Using eq. (i)]

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


12. 

Ans. Let 

For 

 is true.

Now, let  be true for 

 ……….(i)

For 

R.H.S. = 

L.H.S. =a(rk1)r1+ark   [Using eq. (i)]

L.H.S. = 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


13. 

Ans. Let 

For 

 is true.

Now, let  be true for 

  ……….(i)

For 

R.H.S. = 

L.H.S. = [Using eq. (i)]

L.H.S. = 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


14. 

Ans. Let 

For 

 is true.

Now, let  be true for 

 

For 

R.H.S. = 

L.H.S. = [Using eq. (i)]

L.H.S. =  = 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


15. 

Ans. Let 

For 

 

 is true.

Now, let  be true for 

  ……….(i)

For 

R.H.S. = 

L.H.S. = [Using eq. (i)]

=(2k+1)(k(2k1)3+(2k+1))

(2k+1)(2k2k+6k+3)3)

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


16. 

Ans. Let 

For 

 is true.

Now, let  be true for 

  ……….(i)

For 

R.H.S. = 

L.H.S. = 

L.H.S. = 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


17. 

Ans. Let 

For 

 is true.

Now, let  be true for 

 ……….(i)

For 

R.H.S. = 

L.H.S. = 

 L.H.S. = 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


18. 

Ans. Let 

For 

 

 is true.

Now, let  be true for 

 ……….(i)

For ,

  

Now, adding  on both sides of eq. (i), we have

 8 < 9

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


19.  is a multiple of 3.

Ans. Let  is a multiple of 3.

For 

  1 (1 + 1) (1 + 5) is a multiple of 3 = 12 is a multiple of 3

P (1) is true.

Let  be true for ,

 is a multiple of 3.

 ….(i)

For ,

  is a multiple of 3

Now, 

 [Using (i)]

 is a multiple of 3

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


20.  is divisible by 11.

Ans. Let  is divisible by 11.

For  is divisible by 11

= 11 is divisible by 11

P (1) is true.

Let  be true for ,

  is divisible by 11

 

 ……….(i)

For 

  is divisible by 11

  is divisible by 11

Now, 

 is divisible by 11

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


21.  is divisible by 

Ans. Let  is divisible by 

For 

 is divisible by 

  is divisible by 

P (1) is true.

Let  be true for ,

  is divisible by 

 

 ……….(i)

For 

 is divisible by 

Now,

 x2k+2y2k+2=x2k+2x2ky2+x2ky2y2k+2

 [From eq. (i)]

 is divisible by 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


22.  is divisible by 8.

Ans. Let  is divisible by 8.

For 

 is divisible by 8

 64 is divisible by 8

P (1) is true.

Let  be true for ,

 is divisible by 8

 

 ……….(i)

For 

 is divisible by 8

  is divisible by 8

Now, 

 [From eq. (i)]

 

 is divisible by 8

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


23.  is a multiple of 27.

Ans. Let  is a multiple of 27.

For  is a multiple of 27

 27 is a multiple of 27

P (1) is true.

Let  be true for ,

  is a multiple of 27

 …..(i)

For 

 is a multiple of 27

Now, 

 [From eq. (i)]

 is a multiple of 27

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.


24. 

Ans. Let 

For 

9 < 16

P (1) is true.

Let  be true for 

 ……….(i)

For 

Now, adding 2 on both sides in eq. (i),

Also 

 is true.

Therefore,  is true.

Hence by Principle of Mathematical Induction, P(n) is true for all  N.