Principle of Mathematical Induction - Test Papers

 CBSE Test Paper 01

CH-04 Principle of Mathematical Induction 


  1. 34+1516+6364+........... to n terms is equal to

    1. n+4n313

    2. n+4n313

    3. n4n313

    4. n+4n3+13

  2. The greatest positive integer , which divides n ( n + 1 ) ( n + 2 ) ( n + 3 ) for all n  N , is

    1. 120

    2. 6

    3. 24

    4. 2

  3. For all positive integers n, the number 4n+15n1 is divisible by :

    1. 16

    2. 24

    3. 9

    4. 36

  4. If 49n+16n+λ is divisible by 64 for all n  N , then the least negative integral value of λ is

    1. -1

    2. -3

    3. -4

    4. -2

  5. For nN,xn+1+(x+1)2n1 is divisible by :

    1. x2+x+1

    2. x2+x1

    3. x+1

    4. x

  6. Fill in the blanks:

    If a1 = 2 and an = 5 an - 1, then the value of a3 in the sequence is _______.

  7. Fill in the blanks:

    If xn -1 is divisible by x - k, then the least positive integral value of k is ________.

  8. Prove by the principle of mathematical induction that for all n  N, 32n  when divided by 8, the remainder is always 1.

  9. Prove by Mathematical Induction that the sum of first n odd natural numbers is n2.

  10. Let U1 = 1, U2 = 1 and Un+2 = Un+1 + Un for n  1. Use mathematical induction to show that:
    Un = 15{(1+52)n(152)n} for all n  1.

CBSE Test Paper 01
CH-04 Principle of Mathematical Induction 


Solution

  1. (b) n+4n313

    Explanation: When n = 1 we get 3/4, and the subsequent terms when n is replaced by 2,3,4...

  2. (c) 24
    Explanation: If n = 1 then the statement becomes 1x2x3x4= 24 : the consecutive natural numbers when substituted will be multiples of 24.
  3. (c) 9
    Explanation: Replace n = 1 we get 18 n = 2 we get 45.... By the principle of mathematical induction it is divisible by 9.
  4. (a) -1
    Explanation: When n = 1 we have the value of the expression as 65 . Given that the expression is divisible be 64. Hence the value is -1.
  5. (a) x2+x+1

    Explanation: When n = 1 we get x2 ++1

  6. 50

  7. 1

  8. Let P(n) be the statement given by 
    P(n) : 32n when divided by 8, the remainder is 1
    or, P(n) : 32 = 8λ + 1 for some λ  N
    P(1): 32 = 8λ + 1 for some λ  N.
     32 = 8 × 1 + 1 = 8λ +1, where λ = 1
    P(1) is true
    Let P(m) be true. Then, 32m = 8λ + 1 for some λ  N ...(i)
    We shall now show that P(m + 1) is true for which we have to show that 32(m + 1) when divided by 8, the remainder is 1 i.e. 32(m + 1) = 8μ + 1 for some μ  N.
    Now, 32(m + 1) = 32m × 32 = (8λ + 1) × 9 [Using (i)]
    = 72λ + 9 = 72λ + 8 + 1 = 8 (9λ + 1) + 1 = 8μ +1, where μ = 9λ +1  N
     P(m + 1) is true
    Thus, P (m) is true  P (m + 1) is true.
    Hence, by the principle of mathematical induction P(n) is true for all n  N i.e. 32n when divided by 8 the remainder is always 1.

  9. Step I Let P(n) denotes the given statement, i.e.,
    P(n):1+3+5+...n(terms)=n2
    i.e.,P(n):1+3+5+...+(2n1)=n2
    Since,
    First term = 2 × 1 - 1  = 1 
    Second term = 2 × 2 - 1 = 3
    Third term = 2× 3 - 1 = 5 ......
     nth term=2n1
    Step II For n = 1, we have
    LHS=2.11=1
    RHS =12=1=LHS
    Thus, P(1) is true.
    Step III For n = k, let us assume that P(k) is true,
    i.e., P(k):1+3+5+...+(2k1)=k2 ...(i)
    Step IV For n = k + 1, we have to show that P(k + 1) is true, whenever P(k) is true i.e., 
    P(k + 1) :1+3+5+...+(2k1)+[2(k+1)1]=(k+1)2
    LHS =1+3+5+...+(2k1)+[2(k+1)1]
    =k2+2(k+1)1 [from Eq. (i)]
    =k2+2k+1=(k+1)2= RHS
    So, P(k + 1) is true, whenever, P(k) is true.
    Hence, by Principle of Mathematical Induction, P(n) is true for all nN.

  10. Let P(n) be the statement given by
    P(n) : Un  =15{(1+52)n(152)n}
    We have,
    U1 = 15{(1+52)1(152)1}= 1
    and,
    U2 = 15{(1+52)2(152)2} = 15{(1+5+254)(1+5254)} = 1
     P(1) and P(2) are true.
    Let P(n) be true for all n  m
    i.e. Un = 15{(1+52)n(152)n} for all n  m ...(i)
    We shall now show that P(n) is true for n = m + 1.
    i.e. Um+1 = 15{(1+52)m+1(152)m+1}
    We have,
    Un+2 = Un+1 + Un for n  1
     Um+1 = Um + Um-1 for m  2 [On replacing n by (m-1)]
     Um+1 = 15{(1+52)m(152)m} + 15{(1+52)m1(152)m1}[Using (i)]
     Um+1 = 15[{(1+52)m+(1+52)m1} - {(152)m+(152)m1}
     Um+1 = 15{(1+52)m1(1+52+1)(152)m1(152+1)}
     Um+1 = 15{(1+52)m1(3+52)(152)m1(352)}
     Um+1 = 15{(1+52)m1(6+254)(152)m1(6254)} 
     Um+1 = 15{(1+52)m1(1+52)2(152)m1(152)2}
     Um+1 = 15{(1+52)m+1(152)m+1}
     P(m + 1) is true.
    Thus, P(n) is true for all n  m  P(n) is true for all n  m + 1.
    Hence, P(n) is true for all n  N.