Linear Inequalities - Test Papers

 CBSE Test Paper 01

CH-06 Linear Inequalities


  1. The solution set of the inequation 3x < 5 , when x is a natural number is
    1. { 1,2}
    2. { 1 }
    3. {4 }
    4. { 0,1}
  2. The longest side of a triangle is three times the shortest side and the third side is 2cm shorter than the longest side if the perimeter of the triangles at least 61cm, find the minimum length of the shortest side.
    1. 16cm
    2. 61cm
    3. 9cm
    4. 11cm
  3. What is the solution set for 2(x1)53(2+x)7 ?
    1. [44,)
    2. (24,)
    3. (12,)
    4. (4,)
  4. The graph of the inequalities  0 , y  0 , 2x + y + 6  0 is
    1. none of these
    2. a triangle
    3. a square
    4. { }
  5.  3x + 17 <  13, then
    1. x(,10]
    2. x[10,)
    3. none of these
    4. x(10,)
  6. Fill in the blanks:

    If a and b are real numbers, such that a < b, then the set of all real numbers x, such that a < x < b, is called an ________ interval and is denoted by (a, b) or ]a, b[.

  7. Fill in the blanks:

    The value of inequality 37 - (3x + 5)  9x - 8(x - 3) is ________.

  8. Check whether the given plane 3x - 6y  0 contains the point (3, 1).

  9. Solve: x5<3x245x35

  10. Solve: -4x > 30, when

    1.  R
    2.  Z
  11. The cost and revenue functions of a product are given by C (x) = 2x +400 and R(x) = 6x + 20 respectively, where x is the number of items produced by the manufacturer. How many items the manufacturer must sell to realize some profit?

  12. Solve the inequalities and show the graph of the solution in case on number line.
    5x33x5

  13. Solve the following system of inequalities graphically: x2y33x+4y12x0,y1

  14. Solve the following system of inequalities graphically: x3,y2

  15. Solve for x, |x+3|+xx+2 > 1

CBSE Test Paper 01
CH-06 Linear Inequalities


Solution

  1. (b) { 1 }
    Explanation: 3x<5

    x<53

    x<123

    Hence solution set = {x:x<123,xN}={1}

  2. (c) 9cm
    Explanation: Let the shortest side of a triangle be x cm.Then the length of the longest side is3x cm and the length of the third side is (3x-2) cm.
    Given the perimeter of the triangles at least 61cm
    x+3x+(3x2)61
    7x261
    7x63x9

    Hence the minimum length of the shortest side = 9 cm

  3. (a) [44,)

    Explanation:

    Given 2(x1)53(2+x)7

    Multiplying both sides by LCM(5,7)=35,we get
    35.2(x1)535.3(2+x)7
    14(x1)15(2+x)
    14x1430+15x
    14x15x30+14
    x44
    x44

    Solution set is [44,)

  4. (d) { }
    Explanation:

    We have  02 0

    Also given  y  0 

    Hence 2+ 0,which means the minimum value possible for 2+is  zero.

    Now  2x + y + 6  0 2x + y  6   which is not possible 

    Hence  the  system  0 , y  0 , 2x + y + 6  0 has no solution.

  5. (d) x(10,)

    Explanation:

     3x + 17 <  13

     3x + 17 17<  1317

     3x <  30

    3x3>303x>10

    x(10,)

  6. open

  7.  2

  8. We have, 3x - 6y  0
    On putting x = 3 and y = 1, we get 3 (3) - 6 (1)  0
     9 - 6  0
     3  0, which is not true.
     the given plane does not contain the point (3, 1).

  9.  x5<3x24(5x3)5
      x5<5(3x2)4(5x3)20
     x < 15x1020x+124
     4x < -5x +2
     4x + 5x < 2
     9x < 2
     x < 29
     The solution set is (,29)

  10. Now, -4x > 30
    x<304=152

    1. If x  R, x(,152)
    2. If x  Z, x{,10,98}
  11. We know that: profit = Revenue - cost. Therefore, to earn some profit, we must have
    revenue > Cost
     6x + 20 > 2x + 400
     6x - 2x > 400 - 20  4x > 380  x > 3804 = 95
    Hence, the manufacturer must sell more than 95 items to realize some profit.

  12. Here 5x33x5
    5x3x5+3
    2x2
    Dividing both sides by 2, we have
    x1
    The solution set is [1,)
    The representation of the solution set on the number line is

  13. The given inequality is x2y3
    Draw the graph of the line x - 2y = 3
    Table of values satisfying the equation x - 2y = 3

    X15
    Y-11

    Putting (0, 0) in the given inequation, we have
    02×0303, which is true.
     Half plane of x2y3 is towards origin.
    Also the given inequality is 3x+4y12
    Draw the graph of the line 3x + 4y = 12
    Table of values satisfying the equation 3x + 4y = 12

    X40
    Y03


    Putting (0, 0) in the given inequation, we have
    3×0+4×012012, which is false.
     Half plane of 3x+4y2 is away from origin.
    The given inequality is y1.
    Draw the graph of the line y = 1.
    Putting (0, 0) in the given inequation, we have
    01, which is false.
     Half plane of y1 is away from origin.

  14. The given inequality is x3.
    Draw the graph of the line x = 3.
    Putting (0, 0) in the given in equation, we have 03 which is false.
     Half plane of x3 is away from origin.
    Also the given inequality is y2
    Draw the graph of the line y = 3.
    Putting (0, 0) in the given inequation, we have 02 which is false.

     Half plane of y2 is away from origin.

  15. We have, |x+3|+xx+2 > 1
     |x+3|+xx+2 - 1 > 0
     |x+3|+xx2x+2 > 0
     |x+3|2x+2 > 0
    Let x + 3 = 0
     x = - 3
     x = - 3 is a critical point.
    So, here we have two intervals (,3) and [3,)
    Case I: When - 3  x < , then |x+3|= (x + 3)
     |x+3|2x+2 > 0
     x+32x+2 > 0
     x+1x+2 > 0
     (x+1)(x+2)2(x+2) > 0 × (x + 2)2
     (x + 1) (x + 2) > 0
    Product of (x + 1) and (x + 2) will be positive, if both are of same sign.
     (x + 1) > 0 and (x + 2) > 0 or (x + 1) < 0 and (x + 2) < 0
     x > - 1 and x > - 2 or x < - 1 and x < - 2
    On number line, these inequalities can be represented as,

    Thus, - 1 < x <  or -  < x < - 2
    But, here - 3  x < 
     - 1 < x <  or - 3  x < - 2
    Then, solution set in this case is
    x [- 3, - 2)  (- 1, )
    Case II: When x < - 3, then |x+3| = - (x + 3)
     |x+3|2x+2 > 0
     x32x+2 > 0
     (x+5)x+2 > 0
     x+5x+2 < 0
     (x+5)(x+2)2x+2 < 0 × (x + 2)2 
     (x + 5) (x + 2) < 0
    Product of (x + 5) and (x + 2) will be negative, if both are of opposite sign.
     (x + 5) > 0 and (x + 2) < 0 or (x + 5) < 0 and (x + 2) > 0
     x > - 5 and x < - 2 or x < - 5 and x > - 2
    On number line, these inequalities can be represented as,

    Thus, - 5 < x < - 2 i.e., solution set in the case is x (- 5, - 2).
    On combining cases I and II, we get the required solution set of given inequality, which is  x (- 5, - 2)  ( - 1, )