Conic Sections - Solutions
CBSE Class–11 Mathematics
NCERT Solutions
Chapter - 11 Conic Sections
Exercise 11.1
In each of the following Exercises 1 to 5, find the equation of the circle with:
1. Centre (0, 2) and radius 2.
Ans. Given:  and
 and 
Equation of the circle;
 




 
 
2. Centre  and radius 4.
 and radius 4.
Ans. Given:  and
 and 
Equation of the circle ;
 





3. Centre  and radius
 and radius 
Ans. Given:  and
 and 
Equation of the circle ;





 
 
 
 
 
 
 
 
4. Centre  and radius
 and radius 
Ans. Given:  and
 and 
Equation of the circle;





 
 
5. Centre  and radius
 and radius 
Ans. Given:  and
 and 
Equation of the circle ;





 
 
In each of the following Exercises 6 to 9, find the centre and radius of the circles.
6. 
Ans. Given: Equation of the circle;
 
 
  ……….(i)
 ……….(i)
On comparing eq. (i) with 
 and
 and 
7. 
Ans. Given: Equation of the circle: 
 
 
 
 
On comparing eq. (i) with 
 and
 and 
8. 
Ans. Given: Equation of the circle;
.......................... (i)
On comparing eq. (i) with
We get, h = 4 , k = 5 and
9. 
Ans. Given: Equation of the circle: 
 
  (divide the equation by 2)
       (divide the equation by 2)
 
 
 
 
 …….(i)
 …….(i)
On comparing eq. (i) with 
 and
 and 
10. Find the equation of the circle passing through the points (4, 1) and (6, 5) and whose centre lies on the line 
Ans. The equation of the circle is  ……….(i)
 ……….(i)
 Circle passes through point (4, 1)
Circle passes through point (4, 1)





 ……….(ii)
 ……….(ii)
Again Circle passes through point (6, 5)





 ……….(iii)
 ……….(iii)
From eq. (ii) and (iii), we have

 
 

 ……….(iv)
 ……….(iv)
Since the centre  of the circle lies on the line
 of the circle lies on the line 

 ……….(v)
 ……….(v)
On solving eq. (iv) and (v), we have 
Putting the values of  and
 and  in eq. (ii), we have
 in eq. (ii), we have

 
 
Therefore, the equation of the required circle is

 
 
 
 
11. Find the equation of the circle passing through the points (2, 3) and  and whose centre lies on the line
 and whose centre lies on the line 
Ans. The equation of the circle is  ……….(i)
 ……….(i)
 Circle passes through point (2, 3)
Circle passes through point (2, 3)





 ……….(ii)
 ……….(ii)
Again Circle passes through point (–1, 1)





 ……….(iii)
 ……….(iii)
From eq. (ii) and (iii), we have



 ……….(iv)
 ……….(iv)
Since the centre  of the circle lies on the line
 of the circle lies on the line 

 ……….(v)
……….(v)
On solving eq. (iv) and (v), we have 
Putting the values of  and
 and  in eq. (ii), we have
 in eq. (ii), we have

 
 
 
 
Therefore, the equation of the required circle is

 
 
 
 
 
 
 
 
 
 
12. Find the equation of the circle with radius 5 whose centre lies on  axis and passes through the point (2, 3).
axis and passes through the point (2, 3).
Ans. Since the centre of circle lies on  axis, therefore the coordinates of centre is
axis, therefore the coordinates of centre is 
Now the circle passes through the point (2, 3). According to the question,



 
 
 
 
 
 
 
  or
 or 
Taking  , Equation of the circle is
, Equation of the circle is 
 
 
 
 
Taking  , Equation of the circle is
, Equation of the circle is 
 
 
 
 
13. Find the equation of the circle passing through (0, 0) and making intercept  and
 and  on the coordinate axes.
 on the coordinate axes.
Ans. The circle makes intercepts  with
 with  axis and
axis and  with
 with  axis.
axis.

 OA =
OA =  and OB =
 and OB = 
 Coordinates of A and B are
Coordinates of A and B are  and
 and  respectively.
 respectively.
Now the circle passes through the points O (0, 0), A  and B
 and B .
.
Putting these coordinates of three points in the equation of the circle,
 ………(i)
 ………(i)
Circle passing through (0,0)
 
 
the circle also passes through (a,0) and (0,b)

 
 


And 
 
 
 
 
Putting the values of  and
 and  in eq. (i), we have
 in eq. (i), we have

 
 
14. Find the equation of the circle with centre (2, 2) and passes through the point
(4, 5).
Ans. The equation of the circle is  ……….(i)
……….(i)
Since the circle passes through point (4, 5) and coordinates of centre are (2, 2). Radius of circle =
Radius of circle =  =
 =  =
 = 
Therefore, the equation of the required circle is




15. Does the point  lie inside, outside or on the circle
 lie inside, outside or on the circle  ?
 ?
Ans. Given: Equation of the circle 


On comparing with  , we have
, we have  and
 and 
Now distance of the point  from the centre (0, 0)
 from the centre (0, 0)
=  =
 =  =
 =  = 4.3 <
 = 4.3 <
Therefore, the point  lies inside the circle.
 lies inside the circle.