Complex Numbers - Test Papers

 CBSE Test Paper 01

CH-05 Complex & Quadratic


  1. The complex numbers z = x + iy ; x , y  R which satisfy the equation |z3iz+3|=1 lies on

    1. the y axis

    2. the x axis

    3. the line x + y = 0

    4. the line parallel to y axis

  2. If (3+i)10=a+ib;a,bR, then a and b are respectively :

    1. 64 and - 643

    2. 512 and - 5123

    3. 128 and 1283

    4. none of these

  3. z + z¯0 if and only if

    1.  0

    2. Re(z)  0

    3. Im ( z ) 0

    4. | z |  0

  4. If α=zz¯, then |α| is equal to :

    1. -1

    2. 0

    3. 1

    4. none of these

  5. 1+i2+i4+i6+i8+....... up to 1001 terms is equal to

    1. none of these

    2. 0

    3. 1

    4. -1

  6. Fill in the blanks:

    The modulus and argument of z = 1 + i tanα is ________ and ________ respectively.

  7. Fill in the blanks:

    The value of 1i7 is ________.

  8. Solve x2 + 3 = 0

  9. Express the complex numbers (1 + i) - (- 1 + i6) in standard form

  10. Find the difference of the complex numbers (6 + 5i), (3 +2i).

  11. Express the complex numbers (15+25i)(4+52i) in standard form

  12. Solve: ix2 + 4x - 5i = 0.

  13. Find the square root of 1 - i.

  14. If Re (z2) = 0, |z| = 2, then prove that z = ±2±i2.

  15. Find all non-zero complex numbers of z satisfying z¯ = iz.

CBSE Test Paper 01
CH-05 Complex & Quadratic


Solution

  1. (c) the line x + y = 0
    Explanation: Let z=x+iy

    Now |z3iz+3|=1
    |z3i|=|z+3|
    |(x+iy)3i|=|x+iy+3|
    |x+i(y3)|=|(x+3)+iy|
    (y3)2+x2=(x+3)2+(y)2
    (y3)2+x2=(x+3)2+(y)2
    y26y+9+x2=x2+6x+9+y2
    6x+6y=0
    x+y=0

  2. (b) 512 and - 5123

    Explanation:

    First we will find the polar representation of the complex number 3+i
    Let 3+i=r(cosθ+isinθ)rcosθ=3andrsinθ=1
    r2(cos2θ+sin2θ)=3+1=4r2=4r=2

    Now cosθ=32,sinθ=12 , both are positive .

    So Amplitude =θ=Π6

    Hence 3+i=2(cosΠ6+isinΠ6)=2eiΠ6

    Now,
    (3+i)10=(2eiπ6)10=210ei5π3=210(cos(5Π3)+isin(5Π3))
    =210(cos(2ΠΠ3)+isin(2ΠΠ3))=210(cos(π3)+isin(π3))
    =210(cos(Π3)isin(Π3))=210(12i32)=210(13i2)=29(13i)

    Hence  (3+i)10=a+ib 29(13i)=a+ib

    a=29=512andb=293=5123

  3. (b) Re(z)  0
    Explanation: Let Z=x+iy then we have 

    So Z+Z¯=2x

    Now z + z¯0
    2x0
    x0
    Re(z)0

  4. (c) 1
    Explanation:

    Given α=zz¯

    Then |α|=|zz¯|=|z||z¯|=1[|z1z2|=|z1||z2|,|z|=|z¯|]

  5. (c) 1
    Explanation:
    1+i2+i4+i6+i8+. upto 1001 terms 
    =(i2)0+(i2)1+(i2)2+(i2)3+. upto 1001 terms 
    =(i2)0+(i2)1+(i2)2+(i2)3++(i2)1000
    =[(i2)0+(i2)1]+[(i2)2+(i2)3]++[(i2)998+(i2)999]+[(i2)1000]
    =[11]+[11]++[11]+1

    =1
  6. secαα

  7. i

  8. Here x2 + 3 = 0 x2=3x=±3=±3i

  9. (1 + i) - (-1 + i6)
    1 + i + 1 - 6i = 2 - 5i

  10. (6 + 5i) - (3 + 2i) = (6 + 5i) + (- 3 - 2i)
    = (6 - 3) + (5 - 2) i = 3 + 3i

  11. (15+25i)(4+52i)
    =15+25i452i
    =(154)+(2552)i
    =1952110i

  12. We have, ix2 + 4x - 5i = 0 ...(i)
    On comparing Eq. (i) with ax2 + bx + c = 0, we get
    a = i, b = 4 and c = - 5i
     x = b±b24ac2a
     x = 4±(4)24×i(5i)2×i
    4±16+20i22i
    4±16202i [ i2 = - 1]
    4±42i=4±2i2i
    4i2±2i2i = 2i ± 1 [ - 1 = i2]
     x = 2i + 1 and x = 2i - 1
    Hence, the roots of the given equation are 2i + 1 and 2i - 1.

  13. Let x+yi=1i
    Squaring both sides, we get
    x2 - y2 + 2xyi = 1 - i
    Equating the real and imaginary parts
    x2 - y2 = 1 and 2xy=-1... . (i)
    xy=12
    Using the identity
    (x2 + y2)2 = (x2 - y2)2 + 4x2y2
    =(1)2+44(12)2
    = 1 + 1
    = 2
    x2+y2=2 . . . . (ii) [Neglecting (-) sign as x2 + y2 > 0]
    Solving (i) and (ii) we get
    x2=2+12 and y=212
    x=±2+12 and y=±212
    Since the sign of xy is negative.
     if x=2+12 then y=212
    and if x=2+12 then y=212
    1i=±(2+12212i)

  14. Let z = x + iy
     z2 = (x + iy)2 [squaring both sides]
     z= x2 + i2 y2 + 2 ixy
     z= (x2 - y2) + i (2xy)
     Re (z2) = 0
     x2 - y2 = 0  x = ± y
     x = y ...(i)
    and x = - y ...(ii)
    Again, |z| = 2 [given]
     |z|2 = 4
     x2 + y2 = 4 ...(iii)
    From Eqs. (i) and (iii), we get
    y2 + y2 = 4  2y2 = 4
     y= 2  y = ±2
    Therefore, from Eq. (i), we get
    x =  ±2 
     z = ±2 ± i2
    On putting the value of x from Eq. (ii) in Eq. (iii), we get
    (- y)2 + y2 = 4  2 y2 = 4
     y= 2  y = ±2
    From Eq. (ii), x = ± 2
     z = x + iy  z =  ± 2  ± i2
    Hence proved.

  15. Let z = x + iy
    Given: z¯ = iz2
     x - iy = i(x2 - y2 + 2i xy)
     x - iy = i(x2 - y2) - 2xy 
     (x + 2 xy) - i (x2 - y2 + y) = 0
     x + 2xy = 0 ...(i) and x2 - y2 + y = 0 ...(ii)
    Now,
    x + 2 xy = 0  x (1 + 2y) = 0  x = 0 or 1 + 2y = 0  x = 0 or y = -12
    CASE I: When x = 0
    Putting x = 0 in (ii), we have
     - y2 + y = 0  y(y - 1) = 0  y = 0, y = 1
    Thus, we have the following pairs of values of x and y :
    x = 0, y = 0; x = 0, y = 1
     z = 0 + i 0 = 0 and z = 0 + 1i = i
    CASE II: When y = -12
    Putting y = 12 in (ii), we get
    x2 - y2 + y = 0  x2 - 14 - 12 = 0  x2 - 34 = 0  x = ± 32
    Thus, we have the following pairs of values of x and y:
    x = 32, y = 12 and x = 32, y = 12 
     z = 32 - 12i and z = 32 - 12i
    Hence, all non-zero complex numbers of z are i, 32 - 12i, -32 - 12i