Trigonometric Functions - Test Papers

 CBSE Test Paper 01

CH-03 Trigonometric Functions


  1. In a triangle ABC, if A = 75o and B = 45o then b + 2 c is equal to
    1. a
    2. a + b + c
    3. 2 a
    4. 12(a+b+c)
  2. cot θ = sin 2 θ(θ π , n integer) if θ equals
    1. 90 only
    2. 45and60
    3. 45 only
    4. 45and90
  3. If the angles of a triangle ABC are in A.P., then
    1. none of these
    2. c2=a2+b2
    3. a2+c2ac=b2
    4. c2=a2+b2+ab
  4. In a triangle ABC, the line joining the circumcentre and the incentre is parallel to BC, then cos B + cos C =
    1. 32
    2. 1
    3. 12
    4. 34
  5. In a triangle ABC, AD is the median A to BC, then its length is equal to
    1. b+c2
    2. b2+c2a22
    3. b2+c2a22
    4. 122(b2+c2)a2
  6. Fill in the blanks:

    If sinθ + cosecθ = 2, then sin2θ + cosec2θ = ________.

  7. Fill in the blanks:

    The general solution for sec x = sec (π+x) is ________.

  8. Evaluate: cos (- 870o)

  9. Express as a product: cos 4x + cos 8x

  10. Find the degree corresponding to the radian measure2c

  11. Prove sin26x-sin24x= sin 2x sin10 x

  12. Solve: tan x + tan 2x + tan 3x = 0 

  13. If axcosθ+bysinθ = a2 - b2 and, axsinθcos2θbycosθsin2θ = 0, prove that (ax)23+(by)23(a2b2)23.

  14. A horse is tied to a post by a rope. If the horse moves along a circular path always keeping the rope tight and describes 66 m when it has traced out 45° at the centre, find the length of the rope.

  15. Solve: 4 sinx cosx + 2 sinx + 2 cosx + 1 = 0.

CBSE Test Paper 01
CH-03 Trigonometric Functions


Solution

  1. (c) 2 a
    Explanation:

    Given A=75 and B=45
    then A+B+C=180
    75+45+C=180
    C=180-120=60
    From sin e formula
    asinA=bsinB=csinC=k(lct)
    asin75=bsin45=csin60=k
    Here
    a3+122=k,b12=k,c32=kNow,
    a=(3+122)k,b=k2,c=3k2
    b+2c=k2+23k2=2k+23k22=2(3+122)k=2a

     

  2. (d) 45and90

    Explanation:
    sin2θ=cotθ

    2sinθcosθ=sinθcosθ
    cosθ(2sinθ1sinθ)=0
    cosθ(12sin2θ)=0
    cosθcos2θ=0
    cosθ=cosπ2 or cos2θ=cosπ2
    θ=π2,π4[θnπ,nZ]

  3. (c) a2+c2ac=b2

    Explanation:

    Given angles of a triangle ABC are in A.PA+C2=B A+C=2B....(i)

    But we have in a triangle A+B+C=180o3B=180oB=60o  [using(i)]
    Using Cosine Rule we have 

    b2=a2+c22ac.cosBb2=a2+c22ac.cos60b2=a2+c2ac[cos60=12]

  4. (b) 1
    Explanation:

    Using the given condition we have r = R cos A which gives r/R = cos A.hence Cos A + Cos B + cos C -1 = cos A which gives cos B + cos C = 1.

  5. (d) 122(b2+c2)a2

    Explanation:

    Using the given information let the length of the median be d units, and let BD = DB =  m units. Using Apollonius theorem we have the following results.
    From triangle ADC , if the angle ADC is  θ, then b2 = m2 + d2 - 2mdcos θ. The angle ADB is the supplement of angle ADC and it will be - cos θHence from triangle ADB  we have b2 = m2 d22mdcos θ . When we add both the results we have  b2 + c2 = 2 d2 + 2 m2 =  2 d2 + 2 (a2)2 = 2 d2 + ( a22).
    On simplifying we get the result.

  6. 2

  7. x = π2(2n1)

  8. cos(870o)=cos870o [cos(θ)=cos θ]
    cos (π2×1030) = ± cos 30o [ n is even]
    Now, α =870o= π2 × 1030o
    It lies in II quadrant in which cos θ is negative.
    So, cos (- 870o) = - cos 30o = - 32

  9. cos 4x + cos 8x
    =2cos(8x+4x2)cos(8x4x2) [cosC+cosD=2cosC+D2cosCD2]
    = 2 cos 6x cos 2x

  10. (2)c=(180π×2)=(18022×7×(2))=(114611)

    =(114(611×60))

    =[114(32811)]=[11432(811×60)]

    =[1143244]

  11. We have L.H.S. =sin26xsin24x
    =sin(6x+4x)sin(6x4x)
    [sin2Asin2B=sin(A+B)sin(AB)]
    =sin10xsin2x=R.H.S.

  12. tan x + tan 2x + tan 3x = 0
    tan x + tan 2x + (tanx+tan2x)1tanxtan2x=0   [using tan 3x=(tanx+tan2x)1tanxtan2x]
    [tan x + tan 2x][1+11+tanxtan2x]=0
    [tan x + tan 2x][2 - tan x tan 2x] = 0
    tan x = -tan 2x or tan x tan 2x = 2
    x=nπ2x or tanx2tanx1+tan2x=2
    3x=nπ or 2tan2x=22tan2x
    3x=nπ or 4tan2x=2
    x=nπ3 or tan 2x=12
    x=nπ3 or x=mπ+tan1(12),n,mZ

  13. Given,
    axsinθcos2θbycosθsin2θ =0
    ax sin3 θ - by cos3 θ =0
     sin3θby = cos3θax 
    (sin3θby)2/3 = (cos3θax)2/3
     sin2θ(by)2/3 = cos2θ(ax)2/3
     sin2θ(by)2/3 = cos2θ(ax)2/3 = sin2θ+cos2θ(by)2/3+(ax)2/3 [Using ratio and proportions]
     sin2θ(by)2/3 = cos2θ(ax)2/3 = sin2θ+cos2θ(by)2/3+(ax)2/31(by)2/3+(ax)2/3
     sin2 θ = (by)2/3(ax)2/3+(by)2/3 and, cos2θ = (ax)2/3(ax)2/3+(by)2/3
     sin θ = (by)1/3(ax)2/3+(by)2/3 and, cos θ = (ax)1/3(ax)2/3+(by)2/3
    Substituting the values in axcosθ+bysinθ =a2b2
    (ax)2/3(ax)2/3+(by)2/3+(by)2/3(ax)2/3+(by)2/3 =a2b2
     {(ax)2/3+(by)2/3}{(ax)2/3+(by)2/3} =a2b2
     {(ax)2/3+(by)2/3}3/2 = a2 - b2  (ax)2/3+(by)2/3 = (a2b2)2/3

  14. Here PA = PB = r
    arc AB = 66 m and θ=45
    Now θ=45=(45×π180)C=πC4

    We know that
    θ=1r
    π4=66rr=66×422×7=84m

  15. 4sinxcosx+2sinx+2cosx+1=0
     2sin x(2cos x+1)+1(2cos x+1)=0
     (2sin x+1)(2cos x+1)=0
     2sin x+1=0
    or 2cos x+1=0
     sinx= 12
    or cosx= 12
    Now, if sin x = - 12
     sin x = sin (π6)
     The general solution of this equation is
    x = ​​​​nπ+(1)n(π6)nπ+(1)n+1(π6)
     x = π[n+(1)n+16] ...(i)
    and if cos x = 12
     cos x = cos (ππ3) = cos 2π3
    The general solution of this equation is
    x = 2nπ±2π3
     x = 2π(n±13) ... (ii)
    From Eqs. (i) and (ii), we have x = π[n+(1)n+16] or  2π(n±13) where n  Z
    These are the required solutions.