Statistics - Revision Notes

 CBSE Class 11 Mathematics

Revision Notes
Chapter-15
STATISTICS


  1. Mean: x¯=x1+x2+........+xnn
  2. Median: If the number of observations n is odd, then median is (n+12)thobservation and if the number of observations n is even, then median is the mean of (n2)th and (n+12)th observations.
  3. Measures of Dispersion, Range  and Mean Deviation
  4. Variance and Standard Deviation
  5. Analysis of Frequency Distributions
  • Measures of dispersion Range, Quartile deviation, mean deviation, variance, standard deviation are measures of dispersion.
  • Range = Maximum Value – Minimum Value
  • Mean deviation for ungrouped data
    M.D. (x¯)=|xix¯|n
  • Mean Deviation from Median for ungrouped data
    M.D. (M)=|xiM|n
  • Mean deviation for grouped data
    M.D. (x¯)=fi|xix¯|N
  • Mean Deviation from Median for grouped data
    M.D. (M)=fi|xiM|N where N  = N=fi
  • Variance and standard deviation for ungrouped data
    Variance: σ2=1n(xix¯)2
    Standard deviation: σ2=1n(x1x¯)2
  • Variance and standard deviation of a discrete frequency distribution
    Variation: σ2=1N(xix¯)2
    Standard deviation: σ2=1Nfi(x1x¯)2
  • Variance and standard deviation of a continuous frequency distribution

          (i)    If xif1;i = 1, 2, 3, .........., n is a continuous frequency distribution of a variate X,

                  then  σ2=1Nfi(xix¯)2

         (ii)   If x1,x2,.......,xn be the n given observations with respective frequencies

                f1,f2,.......,fn, then    σ=1NNfixi2(fix1)2, where N = f1

         (iii)  If di=xiA, where A is assumed mean, then σ2=1Nfidi2(fidiN)2

         (iv)  If ui=xiAh, where h is the common difference of values of x, then

                 σ2=1N[fiui2(fiuiN)2]

  • Analysis of frequency distribution with equal means but different variances: If the S.D. of group A < the S.D. of group B, then group A is considered more consistent or uniform.
  • Ananlysis of frequency distribution with unequal means: In this case we compare the coefficient of variation [Coefficient of variation (C.V. = 100×S.D.Mean. The series having greater coefficient of variation is said to be more variable than the other.
  • Variance of the combined two series: σ2=1n1+n2[n1(σ12+d12)+n2(σ22+d22)]
    where n1 and n2 are the sizes of two groups, σ1 and σ2 are the S.D. of two groups, d1=a¯x¯d2=b¯x¯ and