Sequences and Series - Test Papers

 CBSE Test Paper 01

CH-09 Sequences and Series


  1. the ratio of first to the last of n A.m.’s between 5 and 35 is 1 : 4. The value of n is

    1. 9

    2. 11

    3. 10

    4. 19

  2. All the terms in A.P., whose first term is a and common difference d are squared. A different series is thus formed. This series is a

    1. H.P.

    2. G.P.

    3. A.P.

    4. none of these

  3. If A, G, H denote respectively the A.M., G.M. and H.M. between two unequal positive numbers, then

    1. A = GH

    2. A2=GH

    3. A=G2H

    4. G2=HA

  4. The next term of the sequence 1, 1, 2, 4, 7, 13,…. Is

    1. 21

    2. 24

    3. none of these

    4. 19

  5. The sum of all non-reducible fractions with the denominator 3 lying between the numbers 5 and 8 is

    1. 31

    2. 52

    3. 41

    4. 39

  6. Fill in the blanks:
    The general term or nth term of G.P. is given by an = ________.
  7. Fill in the blanks:
    The third term of a G.P. is 4, the product of the first five terms is ________.
  8. Find the sum of first n terms and the sum of first 5 terms of the geometric series 1+23+49+

  9. Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.

  10. Find the sum of 20 terms of an AP, whose first term is 3 and last term is 57.

  11. Find the sum to n terms of the sequence: log a, log ar, log ar2, ...

  12. The nth term of an AP is 4n + 1. Write down the first four terms and the 18th term of an AP.

  13. Find the sum to n terms in each of the series 11×2+12×3+13×4+

  14. Find the sum to n terms in each of the series  52 + 62 + 72 + ..... + 202

  15. If a and b are the roots x2 - 3x + p = 0 and c, d are roots of x2 - 12x + q = 0 where a, b, c, d form a G.P. Prove that (q + p):(q - p) = 17:15.

CBSE Test Paper 01
CH-09 Sequences and Series


Solution

  1. (a) 9
    Explanation:

    the sequence is 5,A1,A2,.....An,35
    here a=5 and b=35
    we know that, d=ban+1=355n+1=30n+1
    According to question, 
    A1An=14
    a+da+nd=14
    4a+4d=a+nd
    3a=d(n4)
    3×5=(30n+1)(n4)
    (n+1)=2(n4)
    n+1=2n8
    n=9

  2. (d) none of these
    Explanation: the series obtained will not follow rules of AP, GP and HP
  3. (d) G2=HA
    Explanation:
    Given the numbers are a and b, then we have 
    AM=A=a+b2,GM=G=ab  and HM=H=2aba+b
    Now AH=(a+b2)(2aba+b)=ab=(ab)2=G2
  4. (b) 24
    Explanation:
    The given sequence can be expressed as T1=T2=1
    Tn=Tn1+Tn2+Tn3n3T7=T6+T5+T4=13+7+4=24
  5. (d) 39
    Explanation:
    We have 5=153 and 8=243
    Hence the fractions between5 and 8 with 3 as denominator will be 163,173,183,193,203,213,223 and 233 in this only 6=183 and 7=213 are reducible
    Now 163,173,183,193,203,213,223and 233 is an A.P with first term a = 163 and d=13
    Hence Sum =n2(a+l)=82(163+233)=4(13)=52
    Hence the sum of non redubile fractions = 52-(6+7)=52-13 = 39
  6. arn-1

  7. 45

  8. a = 1, r = 23
    Sn=a(1rn)1r
    =1[1(23)n]123
    =3[1(23)n]
    S5=3[1(23)5]=21181

  9. Let a be the first term of given G.P. Here r =2 and a8 = 192
    an = arn-1
    a8=a×(2)81=192
    a×(2)7=192
    a×128=192
    a=192128=32
    a12 = ar12 - 1
    a12=32×211=3×210
    = 3 ×1024 = 3072

  10. We have, a = 3, l = 57 and n = 20
     Sn = n2 [a + l]
     S20 = 202 [3 + 57]
    = 10 × 60
    = 600

  11. We have sequence log a, log ar, log ar2, ...
    Above sequence can be expressed as log a, (log a + log r), (log a + 2 log r), ...
    [ log mn = log m + log n and log nr = r log n]
    which is clearly an AP with, a = log a and d = log r
    We know that, sum of n terms,
    Sn = n2 [2a + (n - 1)d]
     Sn = n2 [2 log a + (n - 1) log r]
    n2 [log a2 + log rn-1] [x log a = log ax]
    n2 [log a2rn-1] [ log a + log b = log ab]

  12. Here, Tn = 4n + 1 ...(i)
    On putting n = 1, 2, 3, 4 in Eq. (i), we get
    T1 = 4(1) + 1 = 4 + 1 = 5
    T2 = 4 (2) + 1 = 8 + 1 = 9
    T3 = 4 (3) + 1 = 12 + 1 = 13
    and T4 = 4 (4) + 1 = 16 + 1 = 17
    On putting n = 18 in Eq. (i), we get
    T18 = 4(18) + 1 = 72 + 1 = 73
    Hence, the first four terms of an AP are 5, 9, 13, 17 and 18th term is 73.

  13. Given: 11×2+12×3+13×4+ to n terms

    an=1(nthterm of 1,2,3,......)(nthterm of 2,3,4,.......)

    =1[1+(n1)×1][2+(n1)×1]

    Let 1n(n+1)=An+Bn+1 [By partial fraction]

    Then 1=A(n+1) + Bn

    Put n=0 then A=1

    Put n=-1 then B=-1

    1n(n+1)=1n+1n+1

    a1=1112a2=1213a3=1314.........

    And Sn = a1 + a2 + a3 + ........ + an

    =111n+1=nn+1

  14. Given: 52 + 62 + 72 + ....... + 202

    = (12 + 22 + 32 + ...... + 202) - (12 + 22 + 32 + 42)

    n=120n2n=14n2

    =20(20+1)(40+1)64(4+1)(8+1)6

    =20×21×41620×96

    =206(8619)=2840

  15. Let ba=cb=dc=k 

    ba=k

     b = ak And cb=k

     c = bk = (ak)k = ak

    Also dc=k

     d = ck = (ak2)k = ak3

      a and b are the roots x2 - 3x + p = 0 

    a+b=(3)1=3  

     a + ak = 3

     a(1 + k) = 3  ……….(i)

    And ab=p1

     a(ak) = p

     a2k = p​ ......(ii)

    Also c, d are roots of x2 - 12x + q = 0 

    c+d=(12)1=12

     ak2 + ak3 = 12  

     ak2(1 + k) = 12 ……….(iii)

    And cd=q1

     ak2(ak3) = q

     a2k5 = q ……….(iv)

    Dividing eq. (iii) by eq. (i), ak2(1+k)a(1+k)=123   

     k2 = 4  

    k=±2

    Now q+pqp=a2k5+a2ka2k5a2k=a2k(k4+1)a2k(k41) 

    =(±2)4+1(±2)41=16+1161=1715

    Therefore, (q + p):(q - p) = 17:15